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ASYMTOTIC METIDS IN RELIABILITY THEORY: A REVIEW.

Abstract

-) Section 1 of this paper reviews some works related to reliability

evaluation of nonrenewable systems. The assumption that element failure

rates are low allows to obtain an expression for the main term in the

asymptotic representation of system reliability function. Section 2 is

devoted to renewable systems. The main index of interest in reliability

is the time to the first system failure. A typical situation in

reliability is that the repair time is much smaller than the element

lifetime. This Afst rep airw~prperty leads to an interesting phenomenon

that for many renewable systems the time to system failure converges in probablity,

under appropriate norming,to exponential distribution .Some basic

theorems explaining this fact are presented and a series of typical

examples is considered. Special attention is paid to reviewing the works

describing the exponentiality phenomenon in the birth-and-death processes.

Some important aspects of computing the normalizing constants are considered,

among them, the role played by so-called Zin event.'w Section 2 contains

also a review on various bounds on the deviation from exponentiality.

Sections 3 , 4 describe some additional aspects of asymptotics in

reliability. It is typical for the probabilistic models considered in

these sections, that a small parameter is introduced in an explicit form

into the characteristic of the random processes.

A considerable part of this review is based on the sources which were

originally published in Russian and are available in the English translation.

-Key words: Reliability; exponentiality; fast rcpair; small parameter;

main event; renewable systems; asymptotics.
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0. Introduction

The ultimate goal of reliability theory is to give a numerical estimate

of reliability indices. It is well known that for all more or less

complicated cases an exact reliability evaluation is practically impossible.

This stimulates interest to approximate methods in reliability calculations.

In many reliability models of great practical interest "small parameters"

usually are present, e.g., a system under investigation has low element

failure rates and/or the element failure rates are much smaller than their

repair rate. This circumstance makes it possible to use efficient and

powerful asymptotic methods for reliability computation.

The goal of this paper is to review a collection of works devoted

to asymptotic reliability analysis. Most of these works were published in

English translations of Russian scientific journals and for some reason

are not very familiar to the Western applied probability community.

The contents of this paper follows.

A short Section 1 is devoted to an asymptotic analysis of coherent

systems without renewal. Reliability analysis for these systems uses

the fact that element failure rates, Xi. are small in highly reliable

systems (formally, Xi ie, 8 - 0), and this makes it possible to

compute the main term of the asymptotic expression for R(t), the

probability of failure free operation during time t.

Section 2 which is the central in this paper deals with renewable

systems. The reliability index of greatest interest for these systems is
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the probability of failure-free operation during a given mission time t.

The asymptotic analysis exploits the basic fact that the average repair

time for a failed element is usually many times smaller than the average

failure-free operation time for the same element. (This is termed in

reliability as 'Tast" or "rapid" repair). A very general scheme in

asymptotical analysis is the following.

System functioning is described by a regenerating random process

K(t), K(t) often being the number of failed elements at time t.

The regeneration period of K(t), C = E' + E", where C' corresponds

to K(t) - 0 and E" to K(t) > 0. Rapid repair results in a small

probability q of having syste failure on a single E"-interval.

The time T to system failure (SF), T w E1 +"+ 9N' where N is

a geometrically distributed random variable (generally, N depends on E).

It is not surprising that by means of an appropriate norming constant

Y, Y.T should converge in distribution to an' exponential distribution function.

Sections 2.1, 2.2 and 2.3 consider various aspects of this fact and

related facts. Section 2.4 gives a review of a series of important

applications to various reliability problems. Computation of the

quantities determining the normalizing factor y is a difficult

analytic problem. We review briefly several important works on this

topic, mainly due A.D. Solovyev, to give an idea about some technical

aspects of these computations.

,Many of the reliability models of renewable systems can be formulated

in terms of queueing theory. The difference is that the asymptotic
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analysis in reliability deals with low traffic, while the classical

queueing asymptotic deals with high traffic. A few works about low

traffic for queueing models will be reviewed in section 2.S.

Birth-and-Death processes are perhaps the most popular and useful

in reliability theory. Section 2.6 is devoted to a brief review of

the main features of the asymptotic analysis for these processes. Here

the failure-free operation time is interpreted as a passage time T

from an initial state 0 to a "high"-level state m representing

SF. The works by A.D. Solovyev and J. Keilson contain a rather complete

investigation of asymptotic properties of TOm and related variables.

Section 2.7 describes some general features of exponential approximation.

One of them is that the main term in the asymptotic expansion of the

normalizing factor has a transparent and simple probabilistic meaning

and corresponds to so-called "main event". For example, it might be

the event that no repair of any failed element was completed before SF

took place.

Section 2.8 surveys several works on estimating the error bounds

for the exponential approximation.

Section 3 gives very briefly an idea about a method developed by

I.N. Kovalenko for a special analysis of a multidimensional Markov-type

process which has one slowly varying component and one rapidly varying

component. It turns out that, under certain assumptions, the slowly

varying component behaves like a continuos time

Markov process. Section 4 describes a method of asymptotic aaalysis

Si
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based on a combination of analytical and simulation methods, which is

applicable when the quantities determining the original process are

expressed in a series form involving a small parameter.

We did not survey a large number of works devoted to the

investigation of reliability indices for large t (t * a), e.g.,

stationary probabilities of being in a certain state, etc. In addition,

all works dealing with asymptotic properties of input flows, e.g., flow

thinning, superposition of flows, etc., were left outside the scope of

this review.

Our goal was not to present an exhaustive list of bibliography on

the topics concerned in this survey. First, we avoided mentioning those

works which are not available in English. Second, we did not mention

papers or books which already were cited in the reviewed sources.' The

reader can easily trace them from the cited:works, if he becomes

interested in the topics discussed in this review.

This review is addressed mainly to those readers who prefer to get

a first acquaintance with a new topic on an intuitive level, without

going into too may technical details. The reader who is interested in

proofs and other formal details will be able to learn them from the

reviewed sources.

CP

S.. C

a . . . . .. .-- . ..... .
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Notation and Abbreviations

We shall use the following notation and abbreviations.

r.v. - random variable

p.d.f. - probability density function

d.f. - (cumulative) distribution function

BD-process - Birth-and-Death process

SIP - Semi-Markov process

SF - system failure

CM - complete monotone (family of distributions)

F(x) - r..v. & is distributed according to the d.f. F(x).

r- Exp( ) - r.v. & has an exponential distribution with parameter A.

a - b - a and b are asymptotically equal, i.e., a/b I

E[] - expectation of r.v. c.

F(x) = 1 - F(x)

x a (XlX 2 P...Xn) - a row vector; xc xi  yi ,i-l...,n, but for some j,xj*yj*.
T - time to system failure.

R(t) = P(T > tI - system reliability.

X' i - failure rates and/or transition rates for a Markov process.

E+S E_ - sets of "good", resp. "bad" states of a system.

v(t), K(t), x(t) - random processes.

P I1pij 1 - transition matrix for a Markov chain.

7. - stationary probabilities for a Markov chain.1

F(x), H(x), G(x) - d.f.'s.

T -Om passage time from state 0 to state m in a random process.

rOM the expectation of rOm

..# - end of proof or end of the fommulation of a theorem.

IBI - the number of elements in the set B.

1" (ll,...,l)' - a unit column vector.
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1. Systems Without Renewal !

Consider an arbitrary coherent system consisting of n independent

components (elements), the lifetime of i h element being an exponential
r.v. with failure rate Yi Let the state of the system be described

by a binary function 4p(2), where x - (xlX 2 , .,xn) xi  is a binary

indicator of the state of i element (see Barlow & Proschan, 1975,

Ch. 1,2,4). Let T be the system lifetime and let t be the mission P

time. Denote for any x, A(V - {J:xj .l), B(29 - {j:xj=0}. Then

-X .t -X.t
P{Tst) a F(t) TT e , •T (1-e ).(.

{x:(o( )-O} jEA(!) j EB()

An asymptotic investigation of this formula for low failure rates

was done by Burtin Pittel, 1972. A small parameter 9 is introduced

by representing X. =  .e and setting 6 - 0. Denote by A(tie)

system failure rate, A(tle) = (dF(t)/dt)/R(t) and by r the size of

minimal cut-set: r - min{IBW( I : ( a 0}. The following theorem was

proved in the abovecited paper.

Theorem (Burtin & Pittel, 1972). As 6 -o 0

&(tie) - re r t r ' l  I T7 i (1,-o(1)) (1.2)

{x:cpt)-o I I B(_)I-r} jEB(x) I

uniformly with respect to an arbitrary interval 0 < 6 s t < A < #. *

The main term in (1.2) corresponds to the Weibull distribution.

To explain this surprising fact, let us substitute X. e .9 into (1.1)
j 3

and expand exp(-Lit) a 1 - O>6t + o(e). The main term in the

w - - ? . .. . . -" . . .. . . " . . . . . . .
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expansion will be determined by failure states x such that P(L) - 0

and IB(c)l s r.

After some algebra one obtains from (1.1) that

P(rTt} - 1 - trerg(I) (1 + o(i)) , (1.3)

where X. (11 A, 2 ,.. and

gT . (1.4)
{x:(VO & IB(_)I-rl jEB( ) .

Thus,

R(t) 1 - trerg() - expf-ertrg(D)i , (1.5)

which corresponds to th6 Weibull distribution.

The role of min-cuts in getting an accurate approximation to system

reliability was discussed by Locks, 1980.

The formula (1.2) and/or (1.4, 1.5) can be used for practical

purposes only if there is an efficient method for finding all minimal-

size cut-sets. For a real-size system this might be a rather difficult

problem.

Z. Waksman, 1982, proposed a promising approach to this problem,

for a particular type of coherent structures, namely, two-terminal net-

works. His approach uses a flow-in-network technique Zd is based on

introducing a special subnetwork which is equivalent to the original

one in the sense of its asymptotic analysis.

.-...........................



Consider a network - an undirected multigraph- G * (E,V) - for which

the failure is defined as disconnection between two vertices S and T,

called terminals. A separator E in G is a set of edges T T E such

that the removal of T disconnects all chains joining S with T.

Separators of minimal size are called minimum separators (this corres-

ponds to the minimal cut sets in Barlow & Proschan terminology). An

edge • E T is called essential iff e is contained in a minimum

separator. Z. Waksman introduces a subnetwork G (E+,V ) obtained

from G by contracting all edges of G which are not essential. It

turns out that the main terms in asymptotic failure probability

representation (1.3) are the sane for G and G+ .

Assume that each eE E has a maximal flow capacity equal to one.It was proved

that there is a maximum flow from S to T which saturates each essential edge

and does not saturate any unessential edge.The above-cited paper contains an

efficient flow-type algorithm for identifying all essential edges. The

reduction of G to G already signifies a considerable simplification

in reliability computation. The evaluation of the main term in the

asymptotic expansion for G is carried out by an efficient algorithm

which uses pivoting decomposition (see Barlow & Proschan, 1975, Ch. 1).

Specific properties of G allow accelerate considerably the computations.

It is easy to obtain simple formulas for g(X) for several

important particular cases. For example, for a k-out-of-n system,

n
g .) * . (1.6)

,. ., r}  k-l 'k

|r
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where r = n-k+1 and the sumation is made over afl ( n ) combinations

of r indices. Derivation of (1.6) and als.' formulas for series-

parallel structures can be found, for example, in Gertsbakh, 1982.

The formula (1.5) for R(t) allows obtaining a lower confidence

limit for R(t) if an upper confidence limit( QCL) can be found for the

parametric function g (). A method of constructing such an UCL was

described in Gertsbakh, 1982.

It is important for practical applications to estimate the error

in reliability evaluation by formula (1.5). In some situations, the

following upper bound might provide good results:

-x t -X.t
0< F(t)-{ Z n e r (l-e J)}(x t W O 4 IB=_)l-rl A A jEBxx

-A Am
lm (1.7)

m-r+l m

n
(here A = t Z )

i-1

This formula can be obtained by combining the following two facts.

First, the markovian process v(t) which describes system degradation

from state (1,1,...,l) down to a failure state

x* E - {x:,( )O & I B(x) " r+l} should have at least (r+l) transitions.

Second, the probability of having at least (r+l) transitions in v(t)

is no less than the same probability in a "majorant" process '(t) which
n

has a constant transition rate A = Z A.. But the latter is a Poisson
i=l 1
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'4r

process and that explains the form of the bound in (1.7). This method, in

fact, was suggested in a general form by Kovalenko, 1975, Sections 2.6,2.7.

2. Systems with Renewal

2.1. Introduction. Let us consier a system consisting of two identical

blocks 1 and 2, having exponential lifetime, and one repair channel. The

repair time for both blocks has some d.f. H(x). At t - 0 block 1

starts working while block 2 is in standby. When block 1 fails, block 2

starts working and block 1 goes to repair. If block 2 fails during the

repair, the system, by definition, had failed. Otherwise, block 1 returns

to operation and block 2 - to standby. We are interested in the

distribution of the time to failure T of the system. Let us call a

cycle the time interval which starts by putting block I into operation

and ends with the completion of repair of a failed block (type I cycle),

or with SF (type 2 cycle). Denote by C, n the lengths of these

cycles. It is clear that

T -1 + &2 + "" + EN-1 + '1 (2.1)

i3

where N/the random number of cycles, i are independent realizations of

r.v. 9. Let q be the probability that the cycle will terminate by a

SF. Then clearly N has a geometric distribution:

P(N-k} - Cl-q) k-lq, k (2.2)

The operation of many renewable systems until the appearance of the

first SF can be described in terms of the model( Z.1). It is very

a1
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important for reliability theory to know the probabilistic properties of

the r.v. T. It is typical for situations studied in reliability that q

is small, which reflects the fact that the average time of normal operation

is much larger than the average renewal (repair) time. Therefore, it is

natural to investigate the distribution of T for small values of q,

fomally for q - 0. It turns out that under quite general conditions

the appropriately normalized r.v. r converges in distribution to an

exponential d.f. with parameter A = 1

2.2. Keilson's theorem. Let v(t) be an ergodic continuous time

regenerating random process with state space X. A particular state

x 6 X has the property that each entrance into it is a regeneration

point of v(t. Define for each natural m a decomposition X . Xm
1 2

Suppose x0 E )q. Let (1-qm) be the probability that there will be

no SF on a single regeneration period, where SF is defined as entering

the set Xe. Denote by u, u ' -, the expectation of the length of one

regeneration cycle. Keilson, 1966, proved the following theorem.

Theorem (Keilson, 1966, 1979). Let qM o 0 as m - and let

= inf{t: v(t) E XmIv(0)fx O1. Then for each x > 0

lim P{ s x1 1 - ex # (2.3)

The proof is based on the investigation of the limiting form of the

moment generating function for r.v. -m The importance of this theorem
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stems from the fact that only two parameters are involved in the limiting

distribution: the average length of a regeneration period u and

"failure" probability q. on a single regeneration period.

Remark. It follows from the proof of the theorem that v in (2.3) can be replaced

by Um ,the average (conditional) return time to x0 for those trajectories which

do not visit )("

We demonstrate an application of Keilson's theorem by an example.

which might be of interest for reliability theory.

Example. Asymptotic distribution of the time until a SMP gets out of a

kernel (Ushakov 6 Paevlov, 1978).

Consider a SHP v(t) with state space X - (1,2,3,... ). Let

F (t) be the one-step sojourn d.f.'s and let P - i pijl1 be the

matrix of transition probabilities. Let X * X + X XI a {1,2,...,n}.
1 2'0

X is called a "kernel". Define for each i 6 X i  I p... It is

assumed that €i are small and let formally i - 0. The Markov chain

with state space X and transition matrix P has no transient states,

is irreducible and positive recurrent. Assume also that for i E X

mi a Pif Fij (t)dt . Const < (2.4)

Let us introduce a "conditional" SMP v0 (t) with state space X .

V0 (t) is obtained from v(t) by setting ei a 0 and

Pij "Pij/(l'i ). Assume that v0 (t) is an ergodic process. Denote

by T. the stationary probabilities for the Markov chain P0 l 11• [I
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b 0
By a well known formula the mean return time p to the state 1 in

0 0 0 0 00V (t) is P Z 00, . where m1 p F.(t)dt.0ot 1s ,l iExl 1i/e I -'j0

We are interested in the limiting distribution of r.v.

T a inf{t:v(t) C X2 1v(0)ul} which is the exit time of v(t) from the

kernel. The key observation is that - has the representation (2.1),where E are

the return times to state 1 without visiting X2 and n is a "direct" passage time
from state 1 to X2.

There is a small probability q that SNP v(t) will leave the

kernel between two consecutive visits into state 1, because, as

postulated, ei are small. Thus, Keilson's theorem can be applied and

it remains only to compute q. To do that, let us introduce the following

conditional probabilities:

ai  P(exit to X2 during a single regeneration period, before

returning to state 1 j the regeneration period starts at state

i E X}-

Clearly, ai satisfy the following system:

n
1 E +1 k ' 2Pik k' i a l,...,n .Z.5)

Dividing each equation by 1-ci, we obtain

2 n09 KE+ e(0) CO)a + C (2.6)Ss'c' * + oc.) U k Pik k - il 1 2

Now multiply i t h equation by 7r. and sum up all equations. Using

0 0 0 0the fact that ir • P 0 1, one obtains
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0 0 2 0 0 0
I1 a C 0C X I - a C I iciex(1 c 1  ic i"X i x '

where c - max e.. From this

C x 1 0 a C 2 ))/w 1 0 (2.7)
1 1 . i e 1 i i 1

But from the system (2.S) one can see that a = O(e)" Using (2.7),

we see that

0 0
I .e. I ici

ieX 1  2 iE( 1
a1 a q 0 + °(c)' -o (2.8)

i  wI

Thus, the normalizing factor in (2.3) can be taken as

q0 O00

- E / x ,0i (2.9)
Il iex 1 1 1 iEX 1

and we obtain finally that

lir P{T S x} • 1 - • x  (2.10)
when ei - 0 for i E X.

This result was obtained by Pavlov&Ushakov , 1978, using more complicated

techniques.
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2.3. Generalizations of Keilson's model. Solovyev's theorems.

Keilson's theorem relates the fact that qio 0 as m - to the

changes in One can think, for example, that X2m get "smaller"

when m. -. But this particular form of the behavior of qm is too

restrictive. It is more natural to consider a regenerating processes

that can change in such a way that the probability of appearance of the

SF on a single regeneration period goes to zero. This approach was

adopted by A.D. Solovyev.

Let K(t) be a regenerating process, and t0 a 0 < t1 < t2 <... < tn

instants of regenerations. On each regeneration period n - tnn

an event A. can occur at some instant tn.l+ , 0 < n  n An

and nn are defined on the trajectories {)(t), tnl < t < tn} and

they are independent of the behavior of Kc(t) outside this period. Let

r.v. T be the time of the first appearance of event A and let xn be

the indicator function of An . Define

Cn if a 0 ;
(2.11)

n if Xn-1

Let Cn F(x), (pO(z) - E~exp(-z4n)xn], (P(z)- Eexp(-ZCn)]

q - p(O) a P{An1. It is easy to obtain that

a(z) a E[e-] - P(z)/(1 + p(Pz) - (o(z))
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t.t

q-4p. (z)
Lot q sup ---

z O p1 ( z ) "m a x q .

For the sake of simplicity, the subscripts of r.v.'s n" gn, xn

will be dropped. Dqnote also

OP" - c p j 'l qa ;'p" (E[; q (2.1P2/" "
p kE (ECjP)(212

Theorem 1 (Solovyev, 1971)

If the distribution of (C,nx) vary in such a way that q 0

and qo - 0 and if for some normalizing factor y, yx converges to a

proper r.v., then

liz E[e YZ ] - (1 + wCz)) , (2.13)

where

- ~-zx
w(z) = 1 x dP(x) , P(x) is nondecreasing function such that

0x

P(O) a 0 and dP(x) <. A necessary and sufficient condition for the

1x

distribution (2.13) to converge is that for every x > 0,

x t _t
ls - d_ • P -X- #

0q
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Remark (Solovyew, 1971). In the case EI[] T < the normalizing factor

can be taken as y a q/T and out of all distributions in the class

(2.13), t'e "normal" one is the exponential distribution. For it

P(O) a 0, -P~x) = 1 for x 2, 0, us(z) - 2. All other distributions

arise as a result of "pathological" variation of F(x) as we take the

limit. For convergence to an exponential distribution (in the case of

finite average E[ C - T), it is necessary and sufficient that for every

llu-d tT

x q

The following theorem replaces the condition q0  0, which is

difficult to verify, by a more practical one.

Theorem 2 (Solovyev, 1971)

If for an arbitrary p E (1,2], E(cp] <

lim P{T > x} lim P{ L  'x} # (2.14)
-0 T-. T

p p

In applications often the regeneration period C* has the following

structure: 4*= ' + ", where ' is a random period corresponding to

system operation in the absence of element failures(so-called "free"

period); C" starts with a failure of some system element and ends either

by a return to a "brand new" state of the system or by a SF (4" is called

"busy"l period). In all subsequent examples ;" will correspond to system



19

operation when some of its elements are being repaired. The period C",

on the average, is very small in comparison with E[C'], which reflects a

typical "fast repait" situation.

The following theorem given in Gnedenko&Solovyev,1974,provides simple

sufficient conditions for the asymptotic exponentiality.

Theorem 3.

If C' - Exp(X 0), then

lirm A 0qT > x1 i x #(2.1S)

X .E(V]-.,. 0  (2

The most difficult part of applying the theorems given above to

particular situations is (1) checking the conditions providing asymptotic

exponentiality and (2) finding the normalizing factor for the r.v. T.

The latter demands, as a rule, considerable analytic efforts and involves

technical "tricks".

2.4. Applications of theorems of 2.3 to reliability problems.

We survey in this section several important examples of applying

the general theorems given in 2.3 to particular reliability models.

Example 1. A GIIGIrl (m-r)-system (Solovyev, 1970).

A system has (zn+l) identical elements. One and only one of them

is operating and all others are in a "cold" standby. The lifetime of

the operating element is X.- F(x), E[X] - 1. When this element fails,

L=
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it enters the repairing device which has r identical repair channels,

each one being able to repair one failed element. The place of the

failed element is taken by an other element from the standby. The

repair time for each element is Y - G(x). If no repair channel is

available for a failed element, it will.wait in a line. Thus, the

normal circulation of elements is operation-waiting for repair-repair-

standby-operation, etc.

Assume that at the initial moment t z 0 the functioning element

has failed and all other m elements were in standby. SF happens

when at the instant of the failure of the operating element, all other

elements are either in repair or waiting for it, i.e., the standby is

empty. Speaking in terms of an GIIG~rJ (m-r)-system, the SF appears

%hen a customer arrives to a service device when all r service positions

and all m-r waiting places are occupied. Let K (t) be the number of

customers in service at time t , i.e. the number of failed elements at time t

Time instants t i , t 0 = 0 < t1 < t 2 < ... at which elements fail

in the presence of r empty service channels are the regeneration points

of ,€(t).

Assume that element failures took place at the instants -1 a 0,

T2 ' yl' T3 ' Yl * y2,. ""m+l , yl + "'" + ym" Consider the following

trajectory leading to a SF: i t h service channel is busy during the time

interval [Titm+l], i * l,...,r. It is clear that at the instant T I

the system will fail. The event M - (no repair has been completed before

the (ml)th failure) has the probability



21

"4

*m

P(M{) - ' . (Y l .. M. . CY • .+Ym)dFi)*... dFCYm). (2.16)
0 0

The following proposition which can be found in Solovyev's paper, 1971,

gives sufficient conditions for asymptotic exponentiality of r.v. T, the

time to SF, and the form of the normalizing factor.

If

(i) E[X] - 1, F(x) is fixed, IF'(x)I s C, F'(O) A,

F'(x) is continuous at zero;

(ii) G(x) a GO-), GOcx) is fixed and e 0;

(iii) a -a' xm"+ dGO(x) <

0

Then

lim P{qvxl - e , where
L-0

- -r r-l 0
q , m Cxu)du G(x) dx

O (m-r)i (~C-)0

(ii) expresses the fact that the service is "fast"; (iii) is used in the

proof that q - qo"

Example 2 - a general model of standby with renewal (Gnedenko & Solovyev, 1974).

Let us consider the system of Example 1 with the following modification:

each element which is not in the repair and is not waiting for repair can

fail and has failure rate Xk depending on tho total number of nonfailed

-~~ ~~~~ "" ... ... . . ... .. ... . 1 ... . . . .. . ... ...s . . . ... 1 111 . . nm' . .n-. ....
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elements k. Regeneration points of K(t) are the instants when K(t)

enters state 0. The regeneration period is C*= c' + c", where C', "

are independent, ' is a "free" period for which K(t) - 0 and €"

is a "busy" period for which K(t) > 0. Clearly, ,' ~Exp (,0). Denote

by q the probability that the SF appears on a busy period; let

T = f xdG(x). The following theorem is the key for investigating this
0

example.

Theorem (Solovyev & Gnedenko. 1974).

lim P(A0qT > x) a ;x (2.17)
T-0

Proof. Let us consider a "majorant" process (t) with respect to K(t),

which is constructed as follows. Replace all element failure rates by

a max Xk and replace r service channels by one channel. The busy
k

period E" for (t) will exceed, on the average, the budy period c":

E["] k E[c"]. From the queueing theory it is Iaiown that

E[Z"] = T/(1-7T). Since E["] - 0 as T - 0, E[c"] - 0, and it remains

to apply theorem 3 of Section 2.3. #

It should be noted that introducing a "majorant" random process is a

very typical way of proving theorems similar to the above. The following

condition reflects "fast" repair:

7ym"l dG(y)/T m  0. (2.17a)

0
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Obviously, it guarantees that T * 0. Similar to the case of Example 1,

it was proved that given (2.17a), q - q0 a P(M) a P {no repair has been

completed on the busy period).

Simple formulas were derived for q0 for particular cases r m a

and ral:

For r m

l2 ...A m f d0  ) m

q0  ml xG (x) , (2.18)

For r , 1

1 Za* mq0  -m! xmdG(x) . (2.19)
0

Example 3 - "hot" standby with renewal (Solovyev, 1971). The system

consists of a elements each of which operates, fails, is repaired,

operates again, etc., independently of all other elements. The state of

the system at instant t is described by a vector x(t) a (x (t),...,x (t)),

where xiCt) - 1 if element i is in operating condition at time t and

xiCt) - 0, otherwise. Let us suppose that the set E of 2 states of

the system is partitioned into two subsets E = E+ + E_, where +is

the set of "good" states and E is the failure set. The problem is to

find an asymptotic distribution of T, the system failure-free operation

time: T - inf{t:x(t) E EAx(0) - (1,1,...,l)}.
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Assume that the lifetime of ith element Xi -Exp(A.) and that
m

the repair time Y .CGy). For simplicity, Z X 1. The follow-
1 11

ing notation will be used:
Sm m

T E[Y], G(t) - Z XIGi(t), To - i mE A E( ], Do m m
L 1 ~.m 1

The regeneration cycle of x(t) consists of two independent parts:

C', on which x(t) - (1,l,...,l) and C", on which x(t) < (1,l,...,1).

The fast repair situation is reflected by the demand that m0 . 0.

It can be proved that in this case a-2 0 and E[R"] - 0. The main

tool for proving these facts is again replacing the original x(t) by

another process x(t) which in this case corresponds to a number of customers

in an MIj1l-system with input flow with parameter X = 1. Note

that E[' + V1 1 + E;"] 1 as m 0. Thus, theorem 2 of 2.3

shows that

lim P{qT > x) ix 2.20)
M -.0
0

It is more difficult to find an asymptotic estimate of q. It turns out

that if z * 0, then

n
q- q' Z x () T (XiTi)l'xi (2.21)

XEE - i-l

where X(x9 is system failure rate for the state xE E+.

m .. ... -] I ' . .. ... . . . .. . . .. .. .. .. . ... .. . . .. .. . . . .. .. ..: . . .. . . .. . . .. .. . . .. . r | ' ~ l i U . . . . , .... '
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Brown, 1975, considers a special case of the system described in

Example 3, for which E has only one state, namely x- (0,0,...,0)

and all repair times Y i exp(ui). The author proves, using mainly

the Laplace transform technique, the following theorem.

Theorem (Brow, 1975)

If all Ai , 0, at least one A. < "' all ui ' -, at least one

U, > 0, and Ai. Pis m change in such a way that

m
log m • X P i

1+1U,0, C')
Tim m { rin (Xi.)
1 ~ m

then T/E[-r] converges in distribution to an exponential r.v. with

parameter 1 #

Brown's condition (*) reflects the "fast" repair.

Example 4 - renewable system with redundancy (Gnedenko & Solovyev, 197S)

Let us consider the system of Example 3 with some additional features

added. If the state of the system is x(t) at time t, then the

probability of the failure of the it h element in the interval [t,t+h] is

Xi(xt)]h + o(h), i.e., this probability depends on the state of the whole

system x(t). Besides, there are r, r s m, repair channels, the repair

time of element i on the repair channel j is Y ij Gij (y), and

E(Yi.] - Tij. It is assumed that for each element i there is a set

iMIM
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of repair channels able to perform its repair. The repair of failed elements

begins either at the instant of its failure (if the appropriate channel
0

is free) or at the instant at which a repair of some other element has

been completed.

It will be assumed that element failure rates are small, formally

that they have the form aXi (x), where Xii() are fixed and a -O.
m

Let X(C - Z Xi(x) , where Xi(x) = 0 if x. = 0
i=l -- _.

As in the previous cases, the problem is to find the asymptotic

distribution of r.v. T

•r - inf{t:x(t) E E.IXO)- (l,l,...,l)}

The following theorem based on theorem 3 of 2.3 establishes the

asymptotic exponentiality.

Theorem (Gnedenko 6 Solovyev, 1975)

Let 1 -maxX(.), G(y)-minG.(y), T- f(y)dy.
xE., ij -  0

Then

lim P{-T > xa X # (2.22)

It is intuitively clear that E[T] - (X(x(O))q)"1 , where q is the SF

probability on a single regeneration period. It will be very instructive

to follow the main lines of finding an asymptotic expression for q.
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Let us consider the class D of all trajectories of x(t) leading

from the state x- (ll,...,l) into the failure set E. A trajectory

d {x((0) * X ( ... x k I is called monotone if x (0 )  X (1 )_ ...

•. x(k). For example, the trajectory (1,1,1) - (1,1,0) * (0,1,0)

m
is monotone. Denote 1li11 " m - Z xi (X1 CI is the number of failed

iul

elements corresponding to the state

The state x' E E for which I'l s - min lxl is called
xEE

minimal system failure state, or minimal state. A monotone path leading

from x a (ll,....l) to a minimal state is called a minimal monotone

path. Let D0 be the set of all such paths. Then

D DO + I , (2.23)

where D1 is the class of all other paths. Let q(d) be the

probability that the SF will occur along a path d. Then

q * D q(d) - I q(d) + T q(d) . (2.24)
AD dD 0  dED1

The crucial fact is that for a 0 q ~ q0 a X q(d). In other

dED0

words, the "main" part of q cdrresponds

to the "shortest" way of failure appearancer, i.e., along the minimal

monotone paths.

Gnedenko & Solovyev, 1975, present several explicit formulas for q0

for important particular cases. For example, if G .(y) * G.(y),
i j 1
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E[Yij] = Ti, iX -) Xi each element can be repaired on any channel

and r a a. then

as E-1T C T-1 (2.2S)-- k(1)Xk(2)...*k(s)Tk(1)...Tk(s) Tk(1) .. +k(s))

where the sum is taken over all minimal system failurestates, and

k(l) c k(2) < ... < k(s) are the numbers of failed elements in the

minimal failure state.

If r= 1, then

(E [] )1 as k(l) k(2).'kCs)(ms-l,k(l) * M "+ ms-lk(s))5 (2.26)

where ms. 1, i = E[YJ i ] and the sum is similar to that in (2.25).

A problem which is very similar to that described in Example 4 was

considered in a less general setting by Ovchinnikov, 1976.

A useful summary of main reliability indices of various types of

systems, for which the asymptotic exponetiality of time to failure is

valid, can be found in the book by Kozlov & Ushakov, 1975, Sec. 4.2.

2.5. Reliability models in terms of gueueing theory. The models considered

in Section 2.4 can be translated into the language of queueing theory.

When the system is normally functioning it generates a flow of failed

elements ("customers") which need to be served (repaired). SF appears

when an element fails in the presence of, say, m elements which have

already failed. In queueing theory terms, this corresponds to the loss

of a customer who had arrived to a servicing device when all r service

I r .... •..
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channels and all (a-r) waiting places are occupied.

The difference between reliability and queueing problems is in the

fact that reliability theory is usually interested in the case of the

low intensity traffic (this corresponds to fast repair), while the classical

queueing asymptotics deals with high traffic intensity.,

The paper of Vinogradov, 1967, deals with a GIjMjl1(n-1)-system.

The interarrival time has d.f. F(y) which varies that

a I' e'tdF(t) - 0.
00

Let Tn be the moment of the first loss of a customer. The

general class of limiting distributions for the r.v. rn.Y(a0) is

investigated. In particular, it is proved that if

2 -xt dF(t) < - and 0 -b 0 then P{n/ETr] > x1 - e . The paper
0

by Vinogradov, 1974, studies an MIG[1-system with fast service: the

service distribution time approaches zero in probability. It is proved

that P{'n /E[rn] > t) - e" , where Tn is the instant at which the queue

length reaches the level n for the first time.

Solovyev & Zaitsev, 1975, consider an MIG111(k-l)-system with a

Poisson input flow having a variable parameter h*(t). The service time

Y -G*(y). The problem of finding the asymptotic distribution of r.v. ks

the time of the first loss of a customer, is investigated. The central

result obtained is the following

+ . .. . .
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Or

Theorem. If h*(t) - h(t)/O, G*(t) = G(t/a), y aio, B - k

M k ' tk dG(t), then
0

lir P{k > t) * exp{- !t h k 1 x )d x }  #

Asymptotic analysis for a nonstationary input flow involves

considerable analytical difficulties. They are caused mainly by a formal

necessity to avoid pathological behavior of h*(t).

An investigation of an MIGIr-system with a limited waiting space

and a nonstationary input flow was carried out by Zaitsev & Solovyev, 1975.

2.6. Exponentiality in Birth-and-Death Processes. Birth-and-Death

(ED) process is perhaps the most useful type of random processes in

applied probability in general and in reliability theory in particular.

The central role in applications is played by the r.v. T~m, the passage

time from state 0 (a "new" system) to state m representing the

failure of the system. We survey in this section several basic results

concerning the asymptotic behavior of the r.v. T0m and related r.v. 's.

Let us introduce some notation for a BD-process. The process itself

is denoted by v(t), its state space X - (,, 2,...,m,m+l,...). n

n : 0, U, n > 1 denote the "upward" and "downward" transition rates.

Quantities e., i > 0, are defined as

60 0, x ..0 xn-l/UlP2.-. n , n >, 1
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and

T a inf(t:v(t)amv(O),k}

Expectations of T are E[-] " " It will be assued that the

BD-process is ergodic.

Let us consider an example from reliability illustratilg the use

of BD-processes.

Example - a system with standby and renewal (Gnedenko et al., 1969).

A system has N - n+d+L+s similar elements. n elements must always

work and their failure rate is X. d elements are in a "hot"

(preoperation) standby and they have the same failure rate. L elements

are in a "warm" standby and have failure rate 0, B < X. s elements are

in storage (cold standby) and their failure rate is 0. Failed elements

enter a repair shop which is able to repair simultaneously not more than

r elements. The repair time for each element has an exponential

distribution with parameter u. If repair facilities are busy, failed

elements wait in a line. Each operating element, which has failed,

should be immediately replaced by an element from the preoperating
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standby; its place, in turn, is taken by an element from the warm

standby. Elements in warm standby are replaced by elements from

storage. Elements leaving the repair shop join the storage.

The state of the system at time t can be described by the number

v(t) of failed elements. v(t) is a BD-process with transition rates

C(n+d),X + O< 0 $ k < s

Xk (n+d),X + 0(t~s-k) , s < k s s + t

t(n~d. +L + s -k) , s t < k s N

(2.26)

System failure in this case is the event that v(t) reaches the state

m = d + t + s + 1, which means that the number of operating elements

dropped below n. So, the main reliability index is expressed through

d.f. of r.v. TOm'

It is not difficult to find the exact distribution of TOm by

using ordinary methods, but all computations are very cumbersome.

Usually, the parameters Xi. 1i and the level m are such that

reaching m by v(t) is a "rare" event. Thus, it is natural to

investigate the asymptotic behavior of T Om.

For a simple case of fixed Xn' un and m , the limiting

distribution of TOm can be obtained as a corollary of Keilson's
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p

theorem (see Section 2.2). Indeed, let X - (O,1,2,...,m-1),

X- (,m+...), x0 - 0; clearly, qm - 0 for an ergodic process as

a -, and r.v. TOm/ 0m will converge in distribution to the

exponential r.v. But this approach is of limited practical importance

in reliability applications for the following reasons. In reliability,

the critical level m, which is usually the number of failed elements,

is almost never large; on the other hand, the parameters Xn' 'n

often depend on the number m (see, e.g., the previous example) and a

direct application of Keilson's theorem is impossible.

Necessary and sufficient conditions for the asymptotic exponentiality

of TOm were found by Solovyev, 1972. Two of his principal results

are presented in the following

Theorem (Solovyev, 1972)

Suppose that Xis Ui and m vary in an arbitrary way.(i)In order that

" Om ;x
lir P({- x - e (2.27)T OM

it is necessary and sufficient that am, 2  0 0, where

1 m-1l
a, 2 (Xkk k I a s Os" (2.28)

TOm k=o saO

(ii)

max IP{-:oi>t} - exp(-t/ om )I aM, 2  (2.29)
O~t<"S
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The proof of this theorem is based on an ingenious analysis of the

distribution of -r0"

Let us show, following Gnednko et al., 1969, Section 6.4, how

to apply the above theorem. corresponds to element failure rates

and uk - to element repair rates. Normally, Ik << k which reflects

the "fast" repair case. Formalizing this property, let us write

Xk = Xk aand assume that a - 0. Obviously,

8k )a O ek a k (2.30)

It can be proved that

am,2 u ;le-l " . Xi (2.31)

1

Thus cm,2 - 0 as a - 0 and by the Theorem,

P(T on > t} " exp(-t/i Om}

The following formula

P{TOm > ti w exp{-(t-a)/(i Om-a)1, (2.32)

m-1 -1
where a a I ui, 'is more precise and its relative error has the

1

magnitude (iom-t)a/ 2TOM

Several important characteristics of a BD-process related to the

passage time rOm such as ergodic and quasi-stationary exit times were

studied by Keilson,1975,1979.



35

%

Ergodic exit time from X, to X2 , T , is defined as a passage

time from X to X2, assuming that the initial state distribution for
1 29 0

i CY is

E W i9 1(2.33)Pi " wi/ * i 0 ,1,....,m-l 2
iEX

1

where W. is the stationary probability of state i.

Suppose that v(t) has been running for a very long time T and

all that time it was in the set X . Let

p9 - liz P{V(t)-iv(t') E X1, t-T . t, . ti . (2.34)
T-_

It is shown in Keilson, 1979, Sect. 6.6 how the vector p- (pQ,...,pQ1 )

can be expressed through the parameters of BD-process (see Keilson, 1979,

Sect. 6.6, 6.5).

Quasi-stationary exit time is defined as a passage time from Xl to

assuming that the initial state i E X, has the probability pQ.

This index has a special importance for reliability theory because

often it is necessary to predict system reliability given that for a

long time it has been working without failures, i.e., formally, it has

spent an infinite time in the set X1.

A surprising fact about TQ is that TQn/n has an exact

exponential distribution with A = 1. (see Keilson, 1975, 1979).

The following theorems summarize the basic facts about the asymptotic

behaviour of romp T Em' Qm

........ " " .... . , = , , ' - ... .. i i I " 1 - . . .. - .... . .. .. ..." " ' ' | . .. ' .. . ........ "
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Theorem 1 (Keilson. 1979, Sect. 8.3,8.4)

Let v(t) be an ergodic BD-process governed by (XnA with

X1 . (O,l,...,m-l). Let Xn/un P < 1 as n -. Then

i) TMl,m/TOM - 1-0 as M- .

(ii) ima iQMr ri are asymptotically equal as m

(iii) P{tml,m/ Om > x} (1-p)e- x  as m -

Theorem 2 (Keilson, 1979)
For any ergodic BD-process. for which ; O M as m -,

TOm/'Om' TEM/TOm, T(n/TOM converge in distribution to r.v.

Y - Exp(1). #

2.7. Main event. Asymptotic invariance.

The most difficult part in finding the normalizing constant

for r.v. T is determining q, the probability of SF on a single

regeneration period. Generally, q can be represented in a form of

asymptotic series q a qo + q2  "" + where qkl = o(qk). Thus

q in the normalizing constant can be replaced by qo - q. The

quantity qo has a transparent probabilistic meaning and always is

a probability of some event termed in the literature as "Main" event.

Let us return to example 4 in Section 2.4 and, following Gnedenko &

Solovyev, !7S, have a closer look at the relation between

I.

I|
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Xq(d) and 1 q(d).
deD d ED0

Let d {x(O) *- * x ( s)I E Do , and let k(i), i * 1,2,...,s,

be the numbers of failed elements on the d-trajectory. qCd) can be

represented in the following general form:

Xk * () (xO(O)) (x(2) (s-i) s-iq~~d) ~ - (x0) k(1) cx1lk(2) -- )'k(,-l) (xS-ls

I...f Gk(O),j(O)(s-)Gk(r),j(r) (ys-' " yl) "'"
DIYl < " ""<4Ys-1

exp[-(A(X )yl + X  y2-y1). (2)) (YY ' ) ..]d y" s- (2.35)

Indeed, the elements with numbers k(O),k(1),... fail at t - 0,

t = yl, .. "; elements with numbers k(O) , k(r 1)..., begin immediately their repair,

and other elements wait for their turn;the repair of those, elements which started their
repair without waiting does not end before the instant
'0f -s-th failure. This corresponds to a SF on the trajectory d E D0 -

From (2.35) it is easy to show that q(d) Const 'a if I y dG(y) <
0

Lemma (Gnedenko & Solovyev. 1975)

q* 1 q(d) o( as 1  (2.36)

Proof. Obviously, the total number of element failures on any d E D

exceeds s. Let A u {more than s element failures preceded the system

failure) and let B { {the regeneration cycle does not end at the

instant of (s+l) t h element failure}. Clearly A a B and P{A} s P{B}.
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Now replace the random process x(t) by a majorant process i(t) which

arises if all failure.rates are max A(x) - 5,, G..(y) - G(y) and the
x 13

number of repair channels r - 1. Let C = (the "busy" period did not end

at the appearance of (s~l)th failure). Clearly, P{B1 <. P(C). Let

. ns be the repair times for failures which appear at Oyl,...,y s

and let J a {no + n + "' ns :y ys I Ys : 0 1 . Then C s J , P(C) < P(J.).

Let Gs l(x) denote the d.f. of o  ... n s.Combintng all inequalities we get

(10 - c s (sdl) S.< p(J) . (-lax'-) -- 3 (exp.)s f ySdG (y) 0 (, s )
0 (s-l S 51 0

(2.37)

which completes the proof. #

The events denoted by N in Examples 1,2 in Section 2.4 are

also "main" events.

It is worthwhile to note that the role played by the main event in

a renewable system is similar to that played by the event of a failure of

all elements constituting minimal cut-sets in a nonrenewable coherent

system (see Section 1).

We note that qo is the only parameter of tAe asymptotic distribution

which might depend on the properties of repair time d.f. If we check

formulas (2.18), (2.25) in Section 2.4 we see that q0  in both of them

depends only on the average value of the repair time. This phenomenon

was termed by A.D. Solovyev as "asymptotic invariance" . It takes place

only when the main event corresponds to such a system failure history in
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which every failed element entered the repair channel without delay

(compare, e.g., with (2.19)). It is interesting to note that a similar
4

invariance of stationary probabilities with respect to the form of

service time d.f. was established long ago for an important class of

quoueing systems with losses. Let pk be the stationary probability

that there are k customers in an MIGIn-system, 0 -< k % n.

Sevastyanov, 19S7, proved that Pk can be computed by the well-known

Erlang formulas which involve only the input flow rate X and the

average service time f * J xdG(x). An up-to-date information about
0

invariance in queueing systems can be found in a recent paper by
Dukhovny & Koenigsberg, 1981.

2.8 Bounds on deviation from exponentiality. These bounds are of great

interest for engineering applications. Solovyev, 1971, derives an

estimate of the rate of convergence to exponential distribution for

regenerating process considered in Section 2.3. His main result is

the following theorem.

Theorem.

Let E[] - 1, #(t) , P(qr f t), 2 < p % 3, E[ck] mk ,

E k X] aqkthen

supl*(y) - 1 + 0-Y 1 4 CO /(p-2), (2.38)
ybO

where C is an absolute constant and



40

O maxE ) q)21,,p ]  (2.39)

ap is defined in (2.12)

For p a 3, C w12 and in all Imow cases . -O(p). Denote

by q(x) - P{AIC -x), the conditional probability of event A given

Sx. If q(x) + (x), then Op a a •
pp

Bounds for BD-process can be found in Solovyev, 1972, and one of

them is given by (2.29).

Solovyev & Sakhobov, 1976, consider a renewal process of a special form

for which the renewal period consists of two independent parts. The

first part has an exponential distribution with parameter ) while the

second has an arbitrary distribution with finite expectation T. Event

A can appear on the second part with probability q, and the appearance

of this event is determined completely by~the behavior of the

process on the second part of the renewal period. Let W(t) 0 P{ *< t),

where T is the moment of the first appearance of event A. It was

proved that

exp(-Xqt) < W(t) < exp(-Xqt) + AT . (2.40)

In order to apply this formula it is desirable to have two-sided

estimates for the quantity q. Sakhobov & Solovyev, 1977, give such

estimates for a renewal process which is related to an MjGIl-system

for which the input flow intensity depends only on the number C (t) of

customers in the system at time t. If C(t) u k, then the probability

of an arrival of a new customer in the interval (t,t+h) is

A
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k h + o(h). Denote T * inf{t:4(t)-n+1IC(O)=O}. Clearly, C(t) is

a regenerating process, and the instants of regeneration t 0 ,t 1 ,...,

are the times when C(t) enters state O. tn,1 - tn 3 ; " €'

is a free period on which C(t) - 0 and " is the busy period where

4(t) 0 . Denote by bij

bi o Pij(t)XC(t)dt

where G(t) is the d.f. of service time, Pij (t) is the probability

that a pure death process with parameters Xk passes from state i

to state j after time t.

The bounds on q are based on the following lemma which has an

independent interest and can also serve to compute q.

Lemma (Sakhobov 4 Solovyev. 1977).

q = cin/(Cin + + Cn,n + 1) * (2.41)

where ck,n  are determined from the following recursive relation:

ck,. bk,n  b c. i % k n # (2.42),n~ni-k bk,2 c i'n

Let X * max Ak, 0 a min X k' Y " X f exp(- 0t)d~t)dt
k k 0

A simple but crude version of a two-sided estimate on q which can be

derived from the above lemma is the following inequality: if 2n-1 is small,
then

bl n s q s< bl,n /(1-2 ' l y) .(2.43)
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Gemis, 1978, investigated the case when the random variable

has a Laplace-Stiltjes transform E[e " Z] close to 1/(lez):

1+b z~b z 2+b z 3

Eje _Zu 1 2 z i2 3 4 z-it,l+zea2z +a3z +adZ

where Jail and IbiI are "small".

An -application of his method to a "two-period" regenerating process

leads to the following estimate:

supjP{T/E[.] ., X) -1.e-Xl < C'.0
x

where

(i) 8 - a[,E[CX], X2q(E (2X])I , 1 X2q(E[C2 ]),

1 321- X 3q2 (E (c.3] ] A

(ii) 1/A is the average length of the free period; c is the length of the busy

period; X is the indicator of SP on the busy period, q a E[X] , and the

free period has an exponential d.f.

(iii) E[T] -l/q ;

(iv) 0 < C' s 4

An interesting and quite different approach to measuring the

deviation from exponentiality for Markov chains based on the notion of a

complete monotone distribution was developed by Keilson, 1979.
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Definition. A p.d.f. f(x) on [0,,-) is completely monotone (write

f E CM) if all derivatives of f exist and (-1 )nf(
n ) (x) O, n 1.

0

It turns out that f E CM * f(x) f f yeyx dG(x) for some
0

d.f. G(x), i.e.. f(x) is a mixture of exponential densities (see

Keilson, 1979, Section 5.3).

The following quantity 6x  serves as a distance to pure

exponentiality for r.v. X with p.d.f. f(x) E CM:

2
e x  1 - , (2.44)

2
where i- E[X] and a 2 Var X.

e is a distance in metric space sense for f(x) E CM that have

finite second moment (Keilson, 1979, Section 8.7). This makes it

possible to say for two p.d.f.'s f, and f2 E CM which of them is

"more exponential". The applicability of this distance measure to

reliability problems is provided by the fact that many importnat random

variables associated with a Markov process have a p.d.f. E CM. Consider

a time-reversible ergodic Markoc chain v(t) (see Keilson, 1979,

Section 2.4,and note that every ergodic BD-process is time-reversible).

Decompose the state space of v(t), X, into the set X1 of "good"

states and the set X2 of "bad" states. Consider the passage time

TiB from 5ome i E X1  to set X2 ' It was proved that p.d.f, Of iB

is of CM-type (see Keilson, 1979, Section 8.9). Thus it follows that

it is possible to apply the measure of exponentiality (2.44) to r.v.'s
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%OB' TEB T QB- the exit time from the bottom state 0 E X1 to the

set X2, the ergodic exit time from X and the quasi-stationary exit
2 ~1 a

time to X2  , respectively (see the definitions in Section 2.6 ).Of course for

applications one needs to know the mean value and variance of these r.v.'s.

Their computation might be rather complex.Some examples of these computations

are given in the above-cited book of J.Keilson.

It would be desirable also to express the deviation from

exponentiality of the density f(x) C CM in an explicit way. The

following bound was found by Heyde 6 Leslie, 1974:

Let X a Y-W, Y -. Exp(1), and W a nonnegative r.v., independent

of X with E[W] a 1. Then for all x : 0

IP(x > x) - e'XI s 8&T r3 24(o2 - l) (2.4S)
x

Remark. Assume that

liM P{qT/a S< x}) 1 - e " , !0
q-0

where a = E[c] = f (1-F(x))dx, C is a random regeneration period and
0

T is the time of the first appearance of a "rare" event A.

Note that for any fixed e > 0 the value of q* such that

q s q* j IP{q?/a ; x}-e'Xj < e depends, generally, on the form of

d.f. F(x). Moreover, it can be proved that for any fixed q > 0

and fixed a, no upper bound for P(r < x) can be found, except for

a trivial one. More precisely, for any fixed a > 0, T > 0, q > 0 and

e : 0, one can find a d.f. H(x) such that 7 (1-H(x))dx - a but at
0
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the same time, P( s T) > 1-e. Details on this phenomenon can be found

in the paper of Kovalenko, 1973.

3. Kovalenko's Theorem on Asymptotic State Enlargement

A special random process transformation termed "state enlargement"

arises in situations when one is dealing with a multidimensional process

C(t) - {Cl(t),9 2 (t)) which has the following property. C1 (t) is a

slowly varying and C2(t) is a "rapidly" varying component. More

specifically, there exists a time interval A which is "small" from

the viewpoint of CI(t) and "large" from the viewpoint of 42 (t).

On A, 'the process C2(t) can be investigated for a fixed value

of 1 (t), say for the value at the initial time in this interval,

while on A stability is acquired by a certain average characteristic

(4), which in its essential features determines the law of transition

from El(t) to 1 (t+A). Following Kovalenko, 1977, 1980, let us

consider an important example.

Let P a)~= llp j be the transition matrix of an ergodic

Markov chain )}and let "Fi(x)} be a set of distributions

of positive r.v.'s. Let £ ' ) be "small" nonnegative numbers such

that £ CJ , 1, and m,B are members of some finite or
ij

denumerable set. Let us construct a trajectory of a two-dimensional

SNP {a(t),v(t)} according to the following procedure.

Saim
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1. Select a pair (an, vn) as the initial state of the process

,{a(t),v(t)} after the nth jump.

2. Select state vn+1 of the second component according

to the rule:

(a n )
P{Vn 1 = v n} p PJ

(%) Can)
3. Select one-step sojourn time in Ca ,vn), vnn v V' n+ x).

(an , B)
4. Using numbers e , simulate the choice of a new stateVnvn l

CanB)

nl: nl • n with probability I - X

0 .Spn n n+l
Can:B)

(i.e., an  remains unchanged); with probability . e

%n+l B.

S. Remain in state (anvn) for the time vnV and move
n ~~~ Dnnl

afterwards to the state (an+,. vn~l).

One can see that aCt) varies "slowly" and v(t) varies

"rapidly". Moreover, there is a small probability on each step that

a(t) will change. Therefore, one could expect that periods of

a(t) - Const are approximately exponentially distributed (compare with

Keilson's theorem). It turns out that under special circumstances

a(t) indeed behaves as a continuous-time Markov chain. More precisely,

if a series of conditions related to the properties of all quantities
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' involved in the description of {a(t),v(t)) are valid, then the

following theorem is true.

Theorem (Kovalenko, 1977)

For any set of disjoint time intervals A.- [aiibi], i- 1,.-.,n,

sup IP(a(t)-=itCAi , i-1,--n - P{c*(t)-ai,tEai, i-l,n)I 0

where i*(t) is a separable Markov process with transition rates

S i x (a) ( a) a) f xdF.k)(x))

\j~k ' JP'3k 'k j,k J  k  0

where w() are the stationary probabilities for Markov chain v (C) }

all characteristics of random processes involved depend on e, and

the limit is taken as e -0. #

Thus, one can see that asymptotically the first component of a two-

dimensional random process, a(t), has a simple structure and can be treated

separately from v(t). One can say that from the viewpoint of the first component,

a(t)-, the states of the second component v(t) are indistinguishable,which

explains the term "state enlargement".

More formally,let us consider some partition of the state space X of

1(t) a(t),v(t)) into the sets - ( S and a function g(x(t)) such that

g( -)-(Y) if x ES 8  and yC S and gC_) 0 Cg) if xES y s

01 # 82 . In the above, example, g(a(t),v(t)) - a*(t) and the sets X -

A ; v a - Cont.} , where A is the state space of a(t).

The above-mentioned papers of I.N.Kovalenko contain far reaching generalizations

of this scheme and a bibliography of other works related to this topic.

L . ' = •. "; -- ....
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4. "Analyticostatistical" Method of Computing Reliability Characteristics

Let us discuss very briefly an example illustrating a method of

computing systam reliability characteristics described by Kovalenko, 1976.

Assume, a Markov chain (vn, n>.O} with state space R is given by

an initial distribution and transition probabilities, both of which

depend on a small parameter c. Specifically

P(O) CO) (0) , .pC°)(1) + 2.pCO) (2) +. (4.1)

P{O ji v mu . p.. . O) + e.p.(1) + C 2 .p.(2) + "'"4.2)nl n j ijij

Let A c R be a failure set, and suppose it is important to estimate

E Q,] the average value of r.v. ; defined as

r = f(V? , (4.3)

where f is some given function and -r inf{n:v E A).

The special form of Markov chain characteristics (4.1,4.2) allows to obtain

a representation of E[c] in series form:

2
E[] -E[ 0] + C*E(C] + E(4 ... (4.4)

where Ci are random variables. Their distributions depend on some other

auxiliary random variables {e m I whose d.f.'s involve the parameters

of the series (4.1,4.2). Thus, it is possible to simulate r.v.'s

t8 } and by means of them to obtain relaizations of r.v. 's

tm

I . .. .
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2ovalenio's idea is to estimate E[;] by c, where

2-
+ to + 0r (4.5)

%The
and to obtain i, i 0, the estimates of C.z using Monte-Carlo simulation. crucial

point is that due to the specific form of (4.1,4.2), only a few terms

in (4.5) should be estimated in order to achieve good precision.

Many additional important details of this method can found in the

above-cited paper of Kovalenko and also in references mentioned there.

II
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